We have an updated report [Version - 2024] available. Kindly sign up to get the sample of the report.
all report title image

THIRD GENERATION SEQUENCING MARKET ANALYSIS

Third Generation Sequencing Market, By Type of Technology (Single-molecule real-time (SMRT) sequencing, Nanopore sequencing, Synthetic long-read sequencing), By Component (Products and Services), By Application: (Genome sequencing, Epigenetics, Transcriptomics, Metagenomics, Others), By End-User (Biopharmaceutical companies, Hospitals and clinics, Contract research organizations (CROs), Others), By Geography (North America, Europe, Asia Pacific, Latin America, Middle East)

  • Published In : Dec 2023
  • Code : CMI5721
  • Pages :155
  • Formats :
      Excel and PDF
  • Industry : Pharmaceutical

Market Challenges And Opportunities

Third Generation Sequencing Market Drivers:

  • Increasing demand of TGS technologies: TGS technologies offer significantly longer read lengths compared to traditional second-generation sequencing methods. This enables researchers to obtain more complete and accurate genomic information, including the ability to sequence long repetitive regions, structural variations, and complex genomes. For instance, on March 07, 2023, PacBio, a leading producer of high-quality, highly accurate sequencing solutions, has announced that the first customer shipments of Revio long-read sequencing systems will begin on March 8, 2023. As previously stated, the Revio system incorporates significant advances in SMRT Cell design, computing, and system architecture. This, combined with the trusted power of HiFi chemistry, enables a dramatic increase in throughput and lower sequencing costs while providing exceptional accuracy and direct methylation detection.
  • Real-Time Sequencing: TGS platforms provide real-time sequencing capabilities, allowing researchers to monitor the sequencing process as it happens. This feature enables rapid data generation and analysis, facilitating applications such as infectious disease surveillance, monitoring of viral outbreaks, and time-sensitive clinical diagnostics.
  • Direct Sequencing: TGS technologies have the ability to sequence DNA or RNA molecules directly, without the need for amplification or PCR (polymerase chain reaction). This reduces the risk of bias or errors introduced during amplification and streamlines the sequencing workflow, making it more efficient and cost-effective.
  • Growing Demand for Precision Medicine: The field of precision medicine, which aims to tailor medical treatments to individual patients based on their genetic makeup, is driving the demand for comprehensive genomic information. TGS technologies play a crucial role in providing detailed genetic data that can be used to guide personalized treatment decisions. For instance, on January 5, 2023, QIAGEN, a molecular testing solutions provider, announced an exclusive strategic partnership with Helix, a population genomics company based in California, to enhance companion diagnostics for genetic disorders. According to the terms of the agreement, QIAGEN will be Helix's exclusive marketing and contracting partner in the U.S. The partnership will leverage the Helix Laboratory Platform, which recently received the first-ever de novo class II U.S. Food & Drug Administration authorization for a whole exome sequencing platform.

Third Generation Sequencing Market Opportunities:

  • Genomics Research: TGS technologies provide researchers with the ability to generate long-read sequences and capture complex genomic information. This opens up new opportunities for advancing genomics research, including the discovery of novel genetic variations, understanding gene regulation mechanisms, and studying the structure and function of genomes in greater detail. For instance, on August 2023, PacBio, a leading provider of high-quality, highly accurate sequencing solutions, and GeneDx, a leader in improving health outcomes through genomic and clinical insights, have announced a research collaboration with the University of Washington to investigate the capabilities of HiFi long-read whole genome sequencing (WGS) to increase diagnostic rates in pediatric patients with genetic conditions.
  • Clinical Diagnostics: TGS platforms offer potential applications in clinical diagnostics, especially in the identification and characterization of genetic variants associated with diseases. TGS can provide more comprehensive and accurate genetic information, enabling improved diagnosis, personalized treatment strategies, and monitoring of treatment response. For instance, on April 14, 2023, Oxford Nanopore Technologies plc, company that provides a new generation of nanopore-based molecular sensing technology, and bioMérieux SA, a world leader in in vitro diagnostics, announced a collaboration to improve global health outcomes by exploring specific opportunities to bring nanopore sequencing to the infectious disease diagnostics market. The companies are working together to identify and pursue opportunities to improve patient care through access to nanopore-based clinical research and in vitro diagnostic (IVD) solutions.
  • Infectious Disease Surveillance: TGS platforms with real-time sequencing capabilities offer opportunities for rapid identification and characterization of infectious pathogens. This can aid in the surveillance and response to outbreaks, enabling timely intervention strategies and informed public health decisions. According to an article published by WHO on July 12, 2023, Turkey is intensifying efforts to improve its national capacity for genomic surveillance. The program, sponsored by the European Union (EU) and carried out by the Ministry of Health (MoH) and the WHO Country Office in Türkiye, aims to improve laboratory capacities for the detection and surveillance of various infections, including SARS-CoV-2, in order to strengthen health security in the country.
  • Agriculture and Crop Improvement: TGS technologies have applications in agriculture, allowing for the sequencing of plant and animal genomes with high accuracy and resolution. This can facilitate the identification of genetic variations associated with desirable traits, disease resistance, and yield improvement, leading to advancements in crop breeding and livestock management.

Third Generation Sequencing Market Restraints:

  • High Cost & Technical Challenges: TGS technologies can be relatively expensive compared to traditional second-generation sequencing methods. TGS technologies face technical challenges that can limit their adoption and performance. According to an article published by National Institutes of Health in April 2022, fresh material or whole cells are required for the DNA library, and techniques for handling ultra-long high molecular weight DNA need to be improved. Furthermore, TGS faces issues due to greater sequencing error rates and systematic error. The TGS is more expensive than the NGS (US$ 65-US$ 200 per Gb in PacBio and US$ 22-US$ 90 per Gb in ONT). Furthermore, because database systems for interpreting complex Structural variants are rare, thus bioinformatic analysis based on TGS is challenging.
  • Data Analysis Complexity: TGS platforms generate large volumes of data with complex read structures, requiring advanced bioinformatics tools and computational resources for data analysis and interpretation. The complexity of TGS data analysis can be a barrier for researchers and healthcare professionals without specialized bioinformatics expertise, limiting the adoption and utilization of TGS technologies.

Need a Custom Report?

We can customize every report - free of charge - including purchasing stand-alone sections or country-level reports

Customize Now
Logo

Credibility and Certifications

ESOMAR
DUNS Registered
Clutch
DMCA Protected

9001:2015

Credibility and Certifications

27001:2022

Credibility and Certifications

EXISTING CLIENTELE

Joining thousands of companies around the world committed to making the Excellent Business Solutions.

View All Our Clients
trusted clients logo
© 2024 Coherent Market Insights Pvt Ltd. All Rights Reserved.