High cost of advanced life science instruments is one of the major factors restraining the growth of the global life science instrumentation market. The research and development in life science instrumentation requires huge capital investments in advanced technologies. Many benchtops analytical instruments use highly sophisticated technologies like mass spectrometry, spectroscopy, sequencing etc. which pushes the initial costs of these instruments upwards of hundreds of thousands to millions of dollars. Moreover, maintaining precision and accuracy of these instruments over long term requires frequent calibration, validation and upgrade of components which leads to additional operational costs. Several research institutions and academia in developing nations struggle to procure and maintain such expensive instrumentation due to budgetary constraints. As per data from UNESCO Institute for Statistics (UIS), the average expenditure on research and development (R&D) as a percentage of GDP was only 1.7% for low-income countries compared to over 2.4% for high-income countries in 2021. Limited funding for research hampers wider adoption of new life science technologies especially in developing regions of the world. This acts as a barrier for life science companies looking to tap emerging markets.
Market Opportunities: Growing focus on personalized medicine
Growing focus on personalized medicine offers a huge opportunity for the global life science instrumentation market. Personalized medicine takes into account individual variability in genes, environment and lifestyle for each person. It allows doctors or clinicians to select appropriate preventive or therapeutic interventions tailored to the individual. With developments in fields such as pharmacogenomics and molecular diagnostics, it has become possible to analyze an individual's genetic makeup and fine-tune medical treatment based on the person's likely response to drugs or susceptibility to diseases. This shifts the approach from a 'one-size-fits-all' to a tailored treatment for each individual.
Life science instrumentation that can help enable personalized medicine by enabling key aspects such as high-throughput screening, high-sensitivity detection, accurate sample analysis and data processing at the molecular level are poised to grow. For example, next-generation sequencing instruments can rapidly decode whole genomes and detect genetic variations. Such insights allow scientists to better understand how genetic differences influence disease risk, medication response and care management strategies for each person. Mass spectrometry instruments can analyze biological samples to detect protein and metabolite signatures that can serve as biomarkers for diseases or treatment response. Imaging instruments with advanced capabilities help clinicians gain deeper insights into diseases at the molecular level within tissues and cells.
Joining thousands of companies around the world committed to making the Excellent Business Solutions.
View All Our Clients